The latest resilience news from around the world

Researchers identify the safest locations to evacuate employees to during air contamination incidents

Penn State researchers have published the findings of research into single-source pollution events which has implications for improving evacuation plans during air contamination incidents. Roofs and the downwind sides of buildings in street canyons have the lowest levels of particulate matter during such events.

"Previous research has focused on ambient pollution created by traffic," said Jeremy Gernand, assistant professor of industrial health and safety. "We decided to investigate sources of pollution from a point source of particulate matter, such as a chemical spill or an accidental release from a factory."

The researchers investigated a pollutant release scenario to evaluate the safest locations for evacuation and for building design elements such as air intakes. This marks the first study investigating an emission event from a single source near a street canyon.

Researchers in Penn State's Mining Ventilation Laboratory created a 3D miniature street canyon in a wind tunnel using foam blocks to simulate buildings. Four foam blocks were placed in a two-by-two array, separated by gaps that served as streets.

To ensure the airflow within the wind tunnel matched realistic conditions in an urban area, researchers had to make adjustments. Typically, air in a wind tunnel exhibits laminar flow, meaning it flows smoothly in parallel layers with no eddies or crosscurrents that disrupt the direction of flow. This type of flow can be ideal for testing mechanisms such as airplane wings in simulated high-altitude air. At lower elevations, however, air behaves very differently. Near the ground, smaller structures like houses and trees and larger buildings, such as skyscrapers, interrupt the smooth flow of air and cause it to become turbulent, or irregular and agitated.
The researchers used low-cost materials like Legos and cardboard spires to create turbulent airflow in a wind tunnel filled with laminar-flowing air.

To simulate a single particulate emission source, researchers used water generated from an ultrasonic humidifier. Because environmental particulates are frequently coated in water, the collisions between water droplets in a wind tunnel experiment and collisions between water-coated particulates outside can be very similar.

To find the areas in the street canyon where particulate levels reached their minimum and maximum concentrations, researchers used the data from the wind-tunnel experiment to create a computer model of the scenario. Computer simulations showed the lowest particulate concentrations were located at the roof and on downwind building facades. At breathing level, the lowest concentrations were found on the leeward - protected - side of the array's transverse channel, the street running perpendicular to the direction of airflow.

In the event of a pollution release from a central source the research shows that emergency, pedestrians should be evacuated to the leeward side of the transverse channel. For installation of new air intakes, portions of roofs furthest away from inner channels, or roads, of street canyons serve as the safest location, the researchers said.

The researchers reported their findings in the journal Air Quality, Atmosphere and Health.

Want news and features emailed to you?

Signup to our free newsletters and never miss a story.

A website you can trust

The entire Continuity Central website is scanned daily by Sucuri to ensure that no malware exists within the site. This means that you can browse with complete confidence.

Business continuity?

Business continuity can be defined as 'the processes, procedures, decisions and activities to ensure that an organization can continue to function through an operational interruption'. Read more about the basics of business continuity here.

Get the latest news and information sent to you by email

Continuity Central provides a number of free newsletters which are distributed by email. To subscribe click here.