SUBSCRIBE TO
CONTINUITY BRIEFING


Business continuity news

Never miss a news story: signup for our free weekly email newsletter.

REGIONAL PORTALS
Continuity Central currently offers three regional business continuity portals:
North America
United Kingdom
Asia Pacific / Australasia

Phoenix Managed BCM

Add to Google  

Use Google?
Click the button to add Continuity Central news to your Google home page
.

Follow us on Twitter  

Get immediate news
and information updates via our Twitter feed.

SUBMIT YOUR NEWS
To submit news stories to Continuity Central, e-mail the editor.

NEWSFEED
Want an RSS newsfeed for your website? Click here

OUR COOKIE POLICY
Before using this website ensure that you understand and accept our cookie policy. More details

Study finds that H7N9 avian influenza virus has human pandemic potential

The emerging H7N9 avian influenza virus responsible for at least 37 human deaths in China has qualities that could potentially spark a global influenza pandemic, according to a new study published yesterday (July 11th, 2013) in the journal Nature.

An international team led by Yoshihiro Kawaoka of the University of Wisconsin-Madison and the University of Tokyo conducted a comprehensive analysis of two of the first human isolates of the virus from patients in China. Their efforts revealed the H7N9 virus's ability to infect and replicate in several species of mammals, including ferrets and monkeys, and to transmit in ferrets — data that suggests H7N9 viruses have the potential to become a worldwide threat to human health.

"H7N9 viruses have several features typically associated with human influenza viruses and therefore possess pandemic potential and need to be monitored closely," says Kawaoka, one of the world's leading experts on avian flu.

"If H7N9 viruses acquire the ability to transmit efficiently from person to person, a worldwide outbreak is almost certain since humans lack protective immune responses to these types of viruses," says Kawaoka.

Normally, avian influenza viruses do not infect humans, with the exception of the highly pathogenic H5N1 strains. However, the H7N9 virus has so far infected at least 132 humans, killing more than 20 percent of those infected, and several instances of human-to-human infection are suspected.

The new study suggests that the ability of the H7N9 virus to infect and replicate in human cells may be due to just a few amino acid changes in the genetic sequence of the virus.

In monkeys, the H7N9 virus was shown to efficiently infect cells in both the upper and lower respiratory tract. Conventional human flu viruses are typically restricted to the upper airway of infected nonhuman primates.

Transmission studies conducted by Kawaoka's group in ferrets — animals that, like humans, infect one another through coughing and sneezing and that are a standard model for studies of influenza in mammals — showed that one of the H7N9 strains isolated from humans can transmit via respiratory droplets, though not as efficiently as human influenza viruses. The limited aerosol transmission observed in ferrets adds to concerns about the potential threat as avian flu viruses typically lack that ability, Kawaoka notes.

"H7N9 viruses combine several features of pandemic influenza viruses, that is their ability to bind to and replicate in human cells and the ability to transmit via respiratory droplets," Kawaoka says.

Complicating the H7N9 picture is the fact that the H7N9 virus does not kill poultry, which promises to make surveillance much more difficult.

"We cannot simply watch out for sick or dead birds. Rather, tests have to be performed to determine whether or not a bird is infected. Considering the vast number of poultry, this is a daunting task."

The positive news conveyed in the new Nature report is that most of the H7N9 strains tested were somewhat sensitive to antiviral drugs effective against the seasonal flu virus, although one isolate, which appears to be a mix of two variants of the H7N9 virus, seemed to resist neuraminidase inhibitors like Tamiflu.

Further research is needed, Kawaoka argues, to support vaccine development, to assess the risks, and to better understand why the H7N9 viruses infect humans so efficiently.

The H7N9 research was supported by grants from the US National Institute of Allergy and Infectious Diseases Public Health Service. Additional support was provided by the Japan Initiative for Global Research Network on Infectious Diseases from the Ministry of Education, Culture, Sports, Science and Technology; as well as from the Japanese Ministry of Health, Labour and Welfare; and the Japan Science and Technology Agency.

Source: wisc.edu

•Date: 11th July 2013 • World •Type: Article • Topic: Pandemic planning

Business Continuity Newsletter Sign up for Continuity Briefing, our weekly roundup of business continuity news. For news as it happens, subscribe to Continuity Central on Twitter.
   

How to advertise How to advertise on Continuity Central.

BCM software

BCM software

Phoenix

Business continuity software

How to choose an Emergency Notification System